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Abstract

For remote communities in the discontinuous permafrost zone, access to permafrost

distribution maps for hazard assessment is limited and more general products are

often inadequate for use in local-scale planning. In this study we apply established

analytical methods to illustrate a time- and cost-efficient method for conducting

community-scale permafrost mapping in the community of Whatì, Northwest

Territories, Canada. We ran a binary logistic regression (BLR) using a combination of

field data, digital surface model-derived variables, and remotely sensed products.

Independent variables included vegetation, topographic position index, and elevation

bands. The dependent variable was sourced from 139 physical checks of near-surface

permafrost presence/absence sampled across the variable boreal–wetland

environment. Vegetation is the strongest predictor of near-surface permafrost in the

regression. The regression predicts that 50.0% (minimum confidence: 36%) of the

vegetated area is underlain by near-surface permafrost with a spatial accuracy of

72.8%. Analysis of data recorded across various burnt and not-burnt environments

indicated that recent burn scenarios have significantly influenced the distribution of

near-surface permafrost in the community. A spatial burn analysis predicted up to an

18.3% reduction in near-surface permafrost coverage, in a maximum burn scenario

without factoring in the influence of climate change. The study highlights the

potential that in an ecosystem with virtually homogeneous air temperature,

ecosystem structure and disturbance history drive short-term changes in permafrost

distribution and evolution. Thus, at the community level these factors should be

considered as seriously as changes to air temperature as climate changes.
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1 | INTRODUCTION

Communities in permafrost regions face uncertainties and challenges

as climate warms and permafrost thaws. Many northern communities

are becoming increasingly concerned with the adverse environmental

and community impacts of thawing permafrost. Changes in hydrologi-

cal regimes,1,2 landscape instability, and hazards associated with ther-

mokarst3,4 are straining the relationship between northern

communities and valuable ecosystem services,5,6 such as quality of

and access to country foods.7,8 In addition to the impacts on tradi-

tional ways of life, permafrost thaw poses problems for both existing

and future infrastructure including buildings, roads, and pipelines.9–11

These issues are exacerbated by climate change12 and natural distur-

bances common in the boreal forest environment, especially the pres-

ence of fire, which is presently occurring at a shorter recurrence

interval over a longer season.13,14
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Mapping the distribution of permafrost in the discontinuous per-

mafrost zone of southern Northwest Territories (NT), Canada, is chal-

lenging. Although the terrain lacks major topographic relief, the

landscape is heterogeneous with complex interactions between the

boreal ecological community and prominent wetlands.15 For some

communities in the southern reaches of permafrost zones, changes

are not only occurring with respect to climate but also with respect to

the dynamics and structure of the built human communities them-

selves.16 As a result, these communities are concerned with the distri-

bution of permafrost, permafrost-related hazards, and infrastructure

uncertainty.17 As communities change and grow, there is a need for

simple methods of permafrost detection and modeling to provide

community stakeholders with the necessary information to make

informed decisions on future development. Local-scale permafrost

and hazard mapping is a relatively recent but popular field of study in

permafrost sciences.18–20 However, these studies require specific

field data and high-resolution remote sensing products, meaning that

a specific scientific study must take place to acquire this. In locations

where these studies have not taken place, the scale and the represen-

tation of permafrost (e.g., continuity classes, temperature at the top of

permafrost [TTOP]) in existing products can be an issue at the com-

munity level.21 Many existing permafrost products use national-level

maps derived from ground surface temperatures and broad classifica-

tions of substrate materials22 or remote sensing data,23 which cannot

take into account local-scale variations that impact permafrost distri-

bution and community uses of the land.

In many northern communities, recent changes in development

and road connectivity are increasing interactions between people and

permafrost. The objective of this study is to model the spatial distribu-

tion of permafrost in and around one such community to inform con-

tinued development. This study demonstrates a rapid and cost-

effective method for mapping near-surface permafrost to inform

development and future infrastructure. Climate data obtained from

weather stations established in the study area in 2019 indicate that

mean annual air temperature does not vary significantly across the

study area (annually ≈ 0.1–0.3) (P. P. Bonnaventure, unpublished

data). Despite this, the distribution of near-surface permafrost varies

greatly, suggesting that the cause of such variability is ecosystem

structure rather than air temperature. Near-surface permafrost is

defined as permafrost existing in a state where the active layer

freezes to the top of permafrost each winter and no talik exists

between permafrost and the lowest depth of freeze back. Studies in

the general area indicate that late-season active layer depth is less

than 2 m,24,25 so our use of near surface refers to permafrost within

the first 2 m of the ground surface. Additionally, the community faces

the constant possibility of fire (most recently occurring in 2014). The

impact of fire on permafrost degradation has been well

documented26–29 and in this study we examine the impact of fire-

induced landscape change on permafrost distribution using data col-

lected from burnt and not-burnt sites. Ultimately the study illustrates

that ecosystem structure and disturbance are impactful drivers of per-

mafrost distribution and evolution in these landscapes, especially in

the short term. As such, these influences should be considered as

seriously as threats to the ecosystem service provided by permafrost

as air temperature warming due to climate change.

1.1 | Study area

The study area is defined by the 60.0-km2 municipal boundary of

Whatì, NT (Figure 1). The community has a population of 470 people

(2016) and is currently fly-in only during the summer but is connected

to a seasonal road network during the winter months (Jan. 28 to Apr.

15).30 In 2022, construction of a road connecting the community to

the all-season road network is planned to be completed. This road is

expected to increase the population and demand for infrastructure

and services, yet a permafrost distribution map is not currently avail-

able for this area to inform development.

The study area is divided into a northern and a southern

section by a ridge running east to west. The built community of Whatì

(elevation of 247 m asl) is situated in the far west of the study area

against the shores of Lac La Martre. The study area has a relief of

44 m, ranging from 238 to 282 m asl.

Whatì is classified as subarctic, with cool summers and year-

round precipitation according to the Köppen-Geiger climate index

(Dfc).31 The closest long-term weather station is in Yellowknife, NT,

164 km to the southeast with a mean annual air temperature (MAAT)

of �4.3�C and an annual average precipitation of 288.6 mm over the

1981–2010 climatic period. Only five months have a mean daily aver-

age above 0�C.32

Whatì falls into the extensive discontinuous permafrost zone

according to the permafrost map of Canada,22 indicating that 50–90%

of the ground is underlain by permafrost. Ground ice content is cate-

gorized as low (considered to be less than 10% ice by volume of visi-

ble ice), in the upper 10–20 m.22 The main species of vegetation

found throughout the study area are spruce trees (Picea), deciduous

trees such as aspen (Populus) and willow (Salix), Labrador tea (Rhodo-

dendron), buffaloberry (Shepherdia), fireweed (Epilobium), bearberry

(Arctostaphylos), and mosses and lichens including peat moss (Sphag-

num), reindeer lichen (Cladonia) and feathermoss (Ptilium) (Figure 2).

The vegetation of the study area is mainly dependent on the local

hydrology (drainage, water table, soil moisture) and is heterogeneous

over short horizontal distances.

Summer 2014 was a record forest fire season. Roughly 84% of

the study area was affected by the fires, with patches of unaffected

vegetation. The fire stopped short of the built community due to

anthropogenic and natural firebreaks.

2 | METHODS

2.1 | Cryotic assessment sites

We recorded data at 139 cryotic assessment sites (hereafter CASs)

during the field season that took place over a 21-day period in August

2019 (Figure 1). CAS locations were sampled in the field across a
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range of vegetation types, landcover classifications, and topographic

relief.19 Capturing the variation across vegetation types present in the

study area was a key aspect of the field season as landcover is typi-

cally the main control on permafrost distribution in lowland boreal

environments.28,33

To efficiently record CASs in the field, transects were created that

passed through as many vegetation classes as possible with CASs

recorded approximately every 150 m or where vegetation or terrain

sharply changed.19 The distribution of CASs is limited by access as the

environment is difficult to traverse. While the CASs were recorded

away from the influence of infrastructure (roads, off-road trails), they

are clustered around these areas due to accessibility.

2.2 | Cryotic assessment site observations

Site observations at each CAS included thermal profiles34 and major

vegetation types.35–37 We noted the ground cover characteristics,

specifically the presence or absence of moss and lichen (Sphagnum,

Cladonia, and Ptilium)37 recorded as a binary variable (e.g., present or

absent) and additional observations including site surroundings such

as wetland, peat plateau, gravel features,37 and areas affected by

recent wildfires.28,29 We recorded geographic position using a hand-

held GPS (Garmin GPSMAP 64x Series) using waypoint averaging

(accuracy of 1–4 m).

CASs were sampled to determine presence or absence of near-

surface permafrost.34,38 Upon arriving at the location of a CAS, a soil

probe (1.6 cm � 10.2 cm Extendible Tile Probe Complete) or portable

hammer-drill (DeWalt Flexvolt 60 V MAX 4.0 cm Cordless SDS MAX,

DCH481X2) was used to make a pilot hole with a target depth of

1.5 m.24,33 Due to the substrate encountered in the study area, the

soil probe was typically sufficient and most often used. When using

the hammer drill holes were capped and left for a day prior to record-

ing the thermal profile to minimize any thermal disturbances caused

by the drill. Reaching a depth of 1.5 m was not always possible due to

coarse substrate or the presence of near-surface permafrost above

1.5 m. This target depth was chosen as previous studies indicate that

active layer thicknesses in the discontinuous permafrost region of the

F IGURE 1 Study area extent. The extent of
the built community as well as nondeveloped
areas within the study area is indicated with the
inclusion of the current road network and can be
deduced from the base image included in the map.
The base image shows both the heterogeneity of
the environment and the effects of recent forest
fires (2014). Black dots represent the 139 cryotic
assessment sites recorded in August 2019. Inset

map: location of the study area at a national scale;
important bodies of water are included for
reference (imagery © [2017] DigitalGlobe, Inc.)
[Colour figure can be viewed at wileyonlinelibrary.
com]
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NT boreal forest rarely exceed 1.5 m, although they can extend to

2.0 m in less common conditions.24,25 The utilized methods do not

account for taliks or post-burn active layer thickening that cause the

frost table to exist below a depth of 2 m and thus can only detect

near-surface permafrost. Our deepest CAS was 189 cm.

Once we created the pilot hole, we inserted a temperature probe

into the hole and recorded a thermal profile (hole depths ranged from

30 to 189 cm). The temperature probe consisted of a modified carbon

fiber avalanche probe with four thermistor cables (E348-TMC6-HD,

accuracy: < ±0.2�C, resolution: < ±0.03�C). Three thermistor cables

ran through the probe, each exiting the probe at a different depth.

The depth spacing was at 0, 25, and 50 cm from the maximum

depth13 (bottom of probe) with one additional thermistor used to

measure the ground surface temperature. Once the thermal probe

was successfully inserted into the pilot hole all thermistor cables were

plugged into a HOBO 4-Channel Analog Data Logger (UX120-006 M,

accuracy: ±0.15�C, resolution: 0.002�C). The amount of time to reach

equilibrium (5–12 min) varied depending on the temperature, mois-

ture content, and substrate. Once all four channels were changing at a

rate <0.01�C/min, we recorded the values and depths.13,38,39 The

amount of probe extending out of the ground was measured to deter-

mine the depth of the thermal probe.

2.3 | Analytical methods

The statistical relationship between environmental characteristics and

manual checks of near-surface permafrost presence/absence was

determined through the use of a binary logistic regression model per-

formed in the statistical software SPSS40 as well as ArcGIS Pro.41

Three inputs, vegetation observations, topographic positioning index

(TPI),42 and elevation, are identified as being independent variables

whereas ground temperature (presence or absence of permafrost) is

the dependent variable. TPI is an algorithm (Equation 1)43 that can be

F IGURE 2 Common vegetation
classes found throughout Whatì, NT. Five
of the most common vegetation classes
used in the study, mixed-wood forest,
coniferous forest (burnt), peat plateau
(burnt), peat plateau, and wetlands, are
pictured. A less focused photo of the
study area is provided, demonstrating the
heterogenous environment in which the

study was performed providing context to
how these vegetation classes fit into the
environment. Examples of burned
environment throughout the study area
are not pictured in the larger image
[Colour figure can be viewed at
wileyonlinelibrary.com]
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applied across digital elevation models; it compares cells with neigh-

boring cells in order to determine relative elevation. Positive values

mean the cell is higher than its neighbors (hummock) and negative

mean it is lower (hollow), which is useful for locating topographic

depressions. Model input data were derived from CAS observations

as well as optical imagery acquired from GeoEye on September

17, 2017 (Imagery © [2017] DigitalGlobe, Inc.). In this analysis proba-

bility refers to the likelihood that permafrost occurs at a given location

as determined from the data and modeling.

tpi< scalefactor > ¼ int dem� focalmean dem, annulus, irad, oradð Þð Þþ :5ð Þ
ð1Þ

Scalefactor = outer radius in map units

Irad = inner radius of annulus in cells

Orad = outer radius of annulus in cells

2.4 | Field data processing

The vegetation observations (plant species, ground cover) recorded at

each CAS were synthesized into different vegetation classes based on

vegetation species occurrence.19 Coniferous forests, mixed-wood for-

ests, and peat plateaus were split into burnt and not-burnt classes.

Preliminary modeling was conducted with vegetation being broken

into separate burnt and not-burnt classes. Vegetation classes where

preliminary modeling showed that the presence or absence of near-

surface permafrost varied depending on burn status were broken into

burnt and not-burnt classes.

Each CAS that did not reach a depth of 1.5 m24,33 or that indi-

cated the presence of permafrost prior to 1.5 m (n = 31) was exam-

ined by plotting thermal gradient profiles in Excel.34 Here the slope of

the line was examined to determine if ground temperature would

cross a threshold of 0.5�C by a depth of 1.5 m.38,44 CASs were cate-

gorized as permafrost present if 0�C was crossed between a depth of

1.5 and 2 m.13,38

2.5 | Geospatial data processing

Independent variables used in the regression are elevation, TPI, and

vegetation type. To quantify elevation and TPI we used a 2-m eleva-

tion model derived from GeoEye optical imagery taken on September

17, 2017 (Imagery © [2017] DigitalGlobe, Inc.). The surface model

was produced by the Polar Geospatial Center at the University of

Minnesota using the surface extraction with TIN-based search and

space minimization (SETSM) algorithm.45

To confirm that the elevation model provided by the Polar Geos-

patial Center accurately represented the terrain and not a canopy

height, we compared the elevation model to the only available

ICESat-2 summer observations from August 10, 2019. We found a

median difference of 24 cm among the 113 points that were common

between ICESat-2 and the ArcticDEM strip. Five of our points had a

difference of 3–10 m, but these were all in a small lake, indicating that

ICESat-2 is seeing the bathymetry while our elevation model is seeing

the surface of the lake. The difference of only 24 cm between the ele-

vation model and ICESat-2, which penetrates vegetation coverage,

gives us confidence that the elevation model is accurately providing

the ground surface height in the study area.

In this study the elevation variable was used as a proxy for

mineral-rich (gravel as well as larger stones) topographic features

(Table 1). This assessment was made as a result of extensive field

observations and local knowledge. A surficial geology map was not

available at a comparable scale, so elevation breaks in the digital sur-

face model were used to delineate these features. As the presence of

well-drained gravel/till is typically associated with the absence of per-

mafrost in discontinuous permafrost zones, it was important to be

able to capture this spatially.46,47

Standing water, which accumulates in low TPI areas, reduces the

likelihood of permafrost if it remains year-round.33,48 Additionally,

topographic depressions can capture drifting snow in winter, which

prevents winter cooling of permafrost. Thus, areas with a deep snow-

pack are typically associated with higher ground or permafrost

temperatures.49,50

To include TPI and elevation in the binary logistic regression, indi-

vidual raster surfaces were created for TPI and elevation. The extract

by points tool in ArcGIS Pro was then used to create a table that

relates TPI and elevation to the CASs.

We used our vegetation field observations to inform a supervised

classification to derive a spatially complete vegetation map in ENVI.51

The supervised classification used the maximum-likelihood algorithm

and was performed on an image stack made up of R, G, B, and NIR

bands from the above-mentioned GeoEye image and a normalized dif-

ference vegetation index layer.37,52 We smoothed the vegetation clas-

sification with a kernel size of 3 by 3 pixels and aggregate minimum

size of 9 pixels to reduce the noise in the classification. The post-

classification confusion matrix calculated in ENVI showed that the

vegetation classification surface had an accuracy of 91%.

2.6 | Binary logistic regression

In SPSS Statistics40 a random sampling regime was used on the pro-

cessed data from the field, including vegetation, TPI, elevation, and

near-surface permafrost presence (0 or 1) for each of the 139 CASs.

The regime generated ten randomly sampled cross-validation pairs of

testing (33%) and training data (67%). The full dataset was run in

SPSS40 through the BLRM tool. Backwards stepwise regression was

used to evaluate each of the input variables. Vegetation, elevation,

and TPI were deemed to be significant to the regression. BLRM gener-

ated coefficients for each variable as well as an intercept to determine

the relative importance of each factor. The coefficients are repre-

sented by Bί and the intercept is represented by int in Equation 237:

DALY ET AL. 5



P¼ 1

1�e� intþ
Pn

1
Bίð Þ ð2Þ

2.7 | Regression cross validation

Different iterations of the regression (10 random samplings of training

data) were run in SPSS.40 Of the 10 cross-validation pairs only one

would be used to generate the final near-surface permafrost probabil-

ity surface.37 To determine which pair yielded the best results, four

measures were observed: Nagelkerke R-square (range of results:

0.81–0.88), Hosmer and Lemshow significance test (range of results:

0.52–1.00), the accuracy of the training data (referred to as percent-

age correct) (range of results: 88.2–94.6%), and the accuracy of the

testing data (referred to as agreement) (range of results: 80.4–89.1%)

(Table 2). We calculated the “percentage correct” using the BLRM

tool in SPSS40 and measured the accuracy of the BLRM compared to

the training data (Table 3). We calculated agreement in Excel, which

represents the accuracy of the testing subsample when we apply the

regression coefficients generated by the BLRM (Table 3). Table 3 pro-

vides a breakdown of the regression accuracy of the training and test-

ing data for the testing pair that performed best when comparing the

statistical measures detailed below.

TABLE 1 Model input variables, including classes, descriptions, and coefficients (β) obtained through permafrost probability modeling. The
number of cryotic assessment sites within each class is shown as n

Variables Class Description n Coverage (%) β

Vegetation classification Coniferous Forest Black spruce and tamarack tree stands w/, organic

mat. layer including: moss, lichen, Labrador tea,

cinquefoil

19 8.3 90.8

(CC)

Coniferous Forest (Burnt)

(CCB)

Same as Coniferous Forest with grass of Parnassus,

sedges, and horsetails. Visible evidence of recent

burn (2014)

14 9.2 50.3

Low-shrub, Clearing Low-density paper birch, willow. Rose, horsetail,

fireweed and grass

12 0.5 50.3

(LSC)

Low-Shrub, Organic Mat.

(LSOM)

Coniferous Forest adjacent, similar organic mat.,

low-density to no tree cover. Juniper, willow,

spruce, Labrador tea, moss, lichen, cinquefoil

9 12.7 54.2

Mixed-Wood Forest Aspen, birch, willow, spruce, alder w/ thin organic

mat. layer. Rose, buffalo berry, bear berry,

occasional thin layer of moss and lichen

17 2.9 52.8

(MW)

Mixed-Wood Forest (Burnt)

(MWB)

Same as Mixed-Wood Forest w/ fireweed. Visible

evidence of recent burn (2014)

12 18.0 50.2

Peat Plateau Visible plateau or hummocky terrain. Cloudberry,

bog rosemary, white lichen, moss, Labrador tea,

spruce tree stands

16 3.2 73.9

(PP)

Peat Plateau (Burnt) Same as Peat Plateau with visible evidence of burn

(2014)

26 8.7 86.1

Wetland Wet moss layer, grass, bog birch, fireweed,

sundew, wax mertle, willow, cinquefoil, bog

rosemary. High water table. Minimal resistance

to soil probe

14 36.6 50.9

(WL)

Elevationa 1 ≤ 246.8 m asl 13 23.3 50.0

2 ≤ 250.5 m asl 54 37.8 13.7

3 ≤ 255.3 m asl 52 24.4 16.4

4 ≤ 261.9 m asl 16 9.8 13.5

5 ≤ 282.7 m asl 4 4.6 0.0

Topographic Positioning

Index (TPI)

1 ≤�0.8 11 14.2 �5.2

2 ≤ 0.0 76 33.9 13.1

3 ≤ 1.1 48 44.2 15.0

4 ≤ 8.9 4 7.7 0.0

Constant �81.2

aElevation in this instance is being used as a proxy for surficial geology as major topography in the study area is dependent on surficial geology and our

data suggested that surficial geology has an effect on the presence of permafrost.
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The four measures were consistent across all 10 of the pairs. The

only measure with a significant range was the Hosmer and Lemshow

significance test (range: 0.52–1.00), which was 0.52 for

cross-validation pairs eight and nine. The testing pair selected for use

in the study is number seven in Table 2. This run has the highest aver-

age value of 91.0% (the average of all four measures with r2 and sig-

nificance test adjusted to be out of 100) and the highest average

accuracy (89.2%, average of percentage correct and agreement;

Table 2).

2.8 | Near-surface permafrost probability model

The near-surface permafrost probability model was created by reclas-

sifying the raster surfaces of the independent variables (vegetation,

elevation, TPI) to represent the coefficients obtained from the BLRM

in SPSS.40 These were then inserted into Equation 2 in the ArcGIS

Pro41 raster calculator to create the final near-surface permafrost

probability surface (Figure 3). A flowchart depiciting the steps taken

to generate this model can be found in the supplement (Supplement

Figure S1). This yielded a 2-m resolution raster that displays the per-

centage probability of near-surface permafrost being present in any

given pixel.

3 | RESULTS

3.1 | Field results

Of the 139 CASs created during the 2019 field season, we recorded

83 locations with near-surface permafrost (either initially in the field

or in post-processing) and 56 without. Vegetation observations were

recorded and synthesized into nine unique classes. The classes are

burnt coniferous forest, coniferous forest, low-shrub clearing, low-

shrub organic matter mixed-wood forest, burnt mixed-wood forest,

peat plateau, burnt peat plateau, and wetland. One-time measure-

ments of active layer thickness (ALT) were recorded in the field at

each CAS (August 2019). Analysis of these data showed that ALT in

the study area ranges from 40 to 180 cm. Figure 4 shows ALT for

each vegetation class.

TABLE 2 Results of each binary logistic regression model run in SPSS using each cross-validation pair. The highest values for each category
are highlighted in light grey and in bold. VO refers to a model run using the random sampling pair for run 7 but only using vegetation as a model
input

Run no. Nagelkerke R2 H&L sig. test Percentage correct Agreement Average value Average accuracy

1 0.81 0.89 88.2 89.1 87.0 88.7

2 0.88 0.95 92.9 80.4 89.1 86.7

3 0.83 0.99 90.3 82.6 88.8 86.5

4 0.85 0.99 92.5 84.8 90.4 88.7

5 0.85 0.99 90.3 80.4 88.8 85.4

6 0.88 0.99 93.5 80.4 90.4 87.0

7 0.86 1.00 91.4 87.0 91.0 89.2

8 0.86 0.52 92.5 82.6 78.3 87.6

9 0.82 0.52 91.4 84.8 77.6 88.1

10 0.88 0.99 94.6 80.4 90.7 87.5

VO 0.78 1.00 89.2 84.8 87.9 87.0

TABLE 3 Accuracy of the training and testing data for run 7 shown in Table 1. The “training data” confusion matrix is pulled from the results
of the regression. The “testing data” confusion matrix is created by using the regression created using the training data to calculate the
probability of the “testing data.” A confusion matrix was then created. More details with regard to this process can be found in the “Regression
cross validation” section

Observed

Predicted

Training data (% correct) Testing data (agreement)

Permafrost

Correct (%)

Permafrost

Correct (%)Absent Present Absent Present

Permafrost Absent 36 4b 90.0 15 1b 93.8

Present 4a 49 92.5 5a 25 83.3

Overall (%) 91.4 88.5

aFalse positive.
bFalse negative.
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3.2 | Vegetation classification

Landcover percentages in the study area are shown in Figure 5. Vege-

tation covers 84.9% of the study area with the remaining 15.1%

representing waterbodies and infrastructure (13.3 and 1.8% respec-

tively). Wetlands make up 34.9% of the vegetation cover, burnt

mixed-wood forest makes up 19.5%, and low-shrub, organic matter

makes up 12.7%. Burnt coniferous, burnt peat plateau, and coniferous

forests each cover 8.9, 9.6, and 8.7% respectively (Figure 5).

3.3 | Model output

Probability refers to the likelihood that permafrost occurs at a given

location as determined from the data and modeling. The probability

map shows the likely spatial distribution of near-surface permafrost

within the community boundary of Whatì (Figure 3). It predicts that

50.0% of the study area is underlain by near-surface permafrost with

10% of the pixels having a probability of less than 1% and 36% having

a probability of greater than 99%. Individual pixels in the study area

must be assessed as either 0 or 100% probability although 1,000

pixels with identical probability values of 10% would indicate that

near-surface permafrost is expected to be found in 100 pixels.38 For

example, the vegetation class low-shrub organic matter (LSOM) has a

mean probability of 0.75, indicating that 75% of the cells classified as

LSOM are expected to be underlain by near-surface permafrost,

which equates to 1,086,467 pixels that have been classified as LSOM

are expected to be underlain by permafrost. A table that includes all

possible modelled probability values for each vegetation class can be

found in the supplement (Supplement Table S1).

The distribution of near-surface permafrost in the study area is

skewed towards the upper and lower extremes; 32% of the area falls

between 1 and 25% and 10% falls between 75 and 99%. These results

support the notion that ecosystem structure, and surface characteris-

tics including hydrology are driving permafrost distribution rather than

simply mean annual air temperature.47 Middle values representing

probability of 25–75% are predicted for only 12% of the pixels in the

near-surface permafrost probability map.

Of the three variables used in the regression, we found the great-

est correlation between vegetation and the probability surface. This is

F IGURE 3 The permafrost probability surface
generated for the community of Whatì. The
probability surface was generated at a 2-m
resolution by using the results of a binary logistic
regression model that was populated using data
recorded in the field at 139 cryotic assessment
sites. Roads and the community boundary are
included to tie the probability surface to the study
area. Areas not included in the regression model

(built infrastructure) are represented as
“NODATA.” Four breaks are shown in the
probability model, and two extremes (< 0.1 and <
1.00) which represent the two extremes of the
probability model. The < 0.1 class represents cells
with a near zero chance of containing permafrost
and the < 1.00 class represents cells with a near
zero chance of being permafrost-absent. The two
remaining classes show the remaining data split at
50% chance of containing permafrost [Colour
figure can be viewed at wileyonlinelibrary.com]
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evident as the magnitude of coefficients derived from the BLRM tool is

far greater for vegetation (50.2–90.8) than for either elevation or TPI

(�5.2 to 50.0; Table 1). Higher coefficients lead to higher near-surface

permafrost probabilities as the intercept in this regression is �81.2.

The vegetation classes that were correlated with high probability of

near-surface permafrost presence were low-shrub organic matter

(71.0% of pixels classified as permafrost present [>50%]), peat plateau

(99.0%), burnt peat plateau (99.9%), and coniferous forest (100.0%).

These four classes account for 32.9% of the total area of the probabil-

ity map. The wetlands vegetation classification accounts for 36.6% of

the probability map (Figure 6), and 32.9% of the wetland pixels were

classified as having near-surface permafrost. Even though cells classi-

fied as wetland have a low near-surface permafrost probability, they

cover such a large area that they contain 11.8% of the near-surface

permafrost in the study area. The remaining classes, low-shrub clearing

(30.9% of pixels classified as near-surface permafrost present [>50%]),

mixed-wood burnt (26.1%), mixed-wood (36.8%) and coniferous forests

burnt (34.0%), make up 30.5% of the probability map.

4 | DISCUSSION

4.1 | Interclass variability

Except for the peat plateau, burnt peat plateau, and coniferous forest

classes, which have minimal interclass variability, the predicted

probability values of all vegetation classes have some degree of inter-

class variability. This variability is caused by specific influences of the

other two variables in the model (TPI and elevation). As mentioned in

the previous section, the wetland class has the greatest coverage in

the study area (36.6%) and this class accounts for 24.6% of the near-

surface permafrost-absent cells in the study area and 11.8% of the

permafrost-present cells. All possible combinations of variable in the

model containing wetlands predicted probabilities lower than 50%

except for elevation class 1 with any TPI class or elevation class 3 with

TPI class 3 (Table 1). This is also true for vegetation classes with simi-

lar coefficients to the wetland class (CCB, LSC, MWB). This variability

shows that while vegetation is the most important variable in the

model, elevation and TPI act as important modifiers that can tip the

balance of the predicted probability to one side of the 50% threshold.

4.2 | Model accuracy assessment

While the binary logistic regression has an accuracy of 91.4% (Table 3),

this does not represent the accuracy of the probability model. To

assess this, the generated probability surface (Figure 3) was compared

to the assessment of near-surface permafrost presence in the CASs

(n = 139). Agreement (%) was based on whether the probability model

agreed with the assessment of presence/absence in the CASs. The

agreement value is 72.8%. The disagreement (27.2%) could be caused

by errors in data collection, but is probably due to errors in the

F IGURE 4 Box and whisker plots of the distribution of active layer thicknesses measured in the field (August 2019). Active layer thickness
measurements are broken down into respective vegetation classes. Only cryotic assessment sites where permafrost was recorded as present are
included in the graph. Vegetation classes such as low-shrub clearing, mixed-wood (burnt) and wetlands are not included due to a lack of sites
where permafrost was recorded as being present. CC = coniferous forest, CB = coniferous forest (burnt), LSC = low-shrub, clearing,
LSOM = low-shrub, organic matter, MW = mixed-wood forest, MWB = mixed-wood forest (burnt), PP = peat plateau, PPB = peat plateau
(burnt), WL = wetland
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vegetation classification or possibly a control on permafrost presence

that is not captured in the model. The model was verified using a

related testing subset and not an independent verification dataset, and

the sampling method used to select the sites where the testing and

training subsets were recorded in the field was not entirely random, so

the actual accuracy values may be lower than calculated in this study.53

4.3 | Burn analysis

In the last century, forest fires in the northern boreal forest have

increased both in severity and in frequency.14,54 As such, understand-

ing how permafrost responds to fire disturbance is key to understand-

ing the evolution of its spatial distribution. The modeled coefficients

of three vegetation classes contained variations depending on

whether recent burn was experienced (Table 1). Of these classes,

coniferous forests (coefficients: not-burnt, 90.79; burnt, 50.29) repre-

sented the most substantial change in predicted permafrost probabil-

ity when shifting from not-burnt to burnt, while mixed-wood

F IGURE 5 A: supervised vegetation
classification created in ENVI using an image stack
made up of R, G, B, and NIR bands from GeoEye
optical imagery (imagery © [2017] DigitalGlobe,
Inc.) and an NDVI surface derived from the same
imagery. B: graph showing the percentage of area
covered by each class in the vegetation
classification surface. CC = coniferous forest,
CB = coniferous forest (burnt), LSC = low-shrub,

clearing, LSOM = low-shrub, organic matter
(a class that represents a similar forest floor to
coniferous forests, but without tree cover),
MW = mixed-wood forest, MWB = mixed-wood
forest (burnt), PP = peat plateau, PPB = peat
plateau (burnt), WL = wetland [Colour figure can
be viewed at wileyonlinelibrary.com]

F IGURE 6 Graph representing cells classified as permafrost
present and absent and their percentage contribution to the final
probability surface for each vegetation class. CC = coniferous forest,
CB = coniferous forest (burnt), LSC = low-shrub, clearing,
LSOM = low-shrub, organic matter, MW = mixed-wood forest,
MWB = mixed-wood forest (burnt), PP = peat plateau, PPB = peat
plateau (burnt), WL = wetland
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(coefficients: not-burnt, 52.75; burnt, 50.17) and peat plateau (coeffi-

cients: not burnt, 73.92; burnt, 86.05) only changed marginally.

To examine the potential impact of fire on permafrost distribution

in the study area we tested two scenarios: (a) the entire landscape

burns (burn100) and (b) none of the landscape burns (burn0). To create

these surfaces, we changed all cells classified as burnt/not-burnt to

either burnt (burn100) or not-burnt (burn0). Compared to the probabil-

ity model, which shows an average near-surface permafrost probabil-

ity of 50.0%, burn100 results in a reduction in near-surface permafrost

coverage of 6.2% to 43.8%. Burn0 resulted in an increase in coverage

of 12.1% to 62.1%. These scenarios illustrate the impact fire can have

in determining the future near-surface permafrost distribution in

Whatí and is independent of any applied climate change.

The effects of fire on permafrost vary greatly and are typically

dependent on both antecedent conditions and burn severity.28 The

most important factors influencing post-fire permafrost stability are

antecedent organic layer thickness, remaining organic layer thickness

post-fire, post-fire soil moisture content, and the speed of vegetation

succession and regrowth to pre-fire conditions.33,55,56 Results from

the probability model support this as peat plateau shows very little

difference in the probability of near-surface permafrost regardless of

its burnt status (Figure 7).

Peatlands are often more resilient to fire as they typically have a

higher soil moisture content due to poorly drained fine-grained

soils,26,29,57 and there is also the possibility for near-surface perma-

frost to prevent drainage causing a high water table which also

increases resiliency to deep burns.58 This is apparent in a comparison

of ALT between burnt peat-plateau (80.5 cm) and peat plateau

(64.0 cm), which represents a difference of 16.5 cm (Figure 4). In areas

of low burn severity, where moss and other surface organics remain,

the effect of the burn may be less severe and moss could fully recover

in two or three decades.59 In burnt forests, the reduction in the tree

canopy resulting in decreased snow interception is considered to be

one of the greatest factors leading to the degradation of permafrost

and thickening of the active layer.60 This provides an explanation for

why the greatest change (coefficients: not-burnt, 90.79; burnt, 50.29)

due to burn is observed in coniferous forests where tree stands were

burned, reducing interception to near zero, and organic ground cover

was not as thick as in the peat plateaus.

4.4 | Ecosystem robustness to climate change

As the probability model does not involve climate inputs, we cannot

project permafrost presence based on future climate scenarios, but

they are still worth discussing in the context of this model as, along

with forest fire activity, they will determine the future of permafrost

in Whatí. In particular we want to understand whether the rate of

ecosystem succession is fast enough to combat the speed of pre-

dicted warming. RCP4.5 and RCP8.561,62 projections were examined

for the study area for the 2050 (2041–2060) and 2080 (2071–2100)

forecasted climate normals derived from CMIP5.63 With a historical

MAAT of �5�C (1981–2010), RCP4.5 predicts an MAAT of �2.2�C (Δ

+2.8) for 2050 and �1.4�C (Δ +3.6) for 2080.61,62 RCP8.5 however,

predicts an MAAT of �1.1�C (Δ +3.9) and 1.6�C (Δ +6.6) for 2050

and 2080 respectively.61,62 Smith et al (2015) concluded that

regrowth of a boreal environment after a burn would take 50 years

and a predicted rise in MAAT of 3�C (MAAT of 1981–2010 climate

normal for Smith et al's (2015) study area = �5.1�C) over that span

was enough that permafrost in burnt environments would probably

not return to pre-burn conditions until complete regrowth occurs.

Looking at the 2050 projection for RCP4.5, the rise in temperature is

+2.8�C for Whatí, just short of that 3�C threshold found by Smith

et al (2015). However, RCP8.5 represents a rise of 3.6�C, well past

the threshold. This indicates that in the 50 years from the 2014 burn

in Whatì, MAAT is expected to increase by at least 2.8�C, which

would probably prevent permafrost from returning to pre-burn condi-

tions even after the local ecosystem has returned to pre-burn condi-

tions.60 This illustrates that both a combination of ecosystem

structural changes and predicted air temperature warming must be

considered in an examination of possible permafrost change in these

environments.

F IGURE 7 Box and whiskers plot
representing the distribution (range, average,
standard deviation) of permafrost probability
generated by the model for each vegetation class.
CC = coniferous forest, CB = coniferous forest
(burnt), LSC = low-shrub, clearing, LSOM = low-
shrub, organic matter, MW = mixed-wood forest,
MWB = mixed-wood forest (burnt), PP = peat
plateau, PPB = peat plateau (burnt),
WL = wetland
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4.5 | Uncertainty and improvements

There are a few ways our model could be improved with better obser-

vations. The number of CASs across all vegetation types is uneven

and, in some situations, unrepresentative of the ground cover per cent

of specific classes. This issue also impacts our elevation classes, spe-

cifically elevation class 1, which is underrepresented (13 of 139) in

our sampling data but makes up 50% of our study area (Table 1). Fur-

ther expansion of the CAS coverage would be useful as it would allow

for larger amounts of training data and better landcover class repre-

sentation, although this is challenging given the difficult access to the

entire study area when the ground is not frozen.

The vegetation classification is another source of uncertainty.

Incorporating better ground truth data and/or airborne observations

(e.g., thermal imagery) would help improve the model.64–66 Radar or

lidar would also have helped as the structure of wetlands could vary

significantly from other classes such as burnt coniferous forest.67–69

Weather stations in each landcover class are not available for the

study area, and therefore temperature measurements are not incorpo-

rated into this model. This limits our ability to adjust the model for

future climate scenarios. If these data were available, an approach uti-

lizing these data such as a temperature at the top of permafrost would

be prudent for modeling permafrost temperature in the area.70

5 | CONCLUSIONS

This study presents an effective way to quantify the distribution of per-

mafrost around northern communities. The methodology is highly trans-

ferable, and the results of the model provide considerably more

permafrost spatial information at higher resolutions than has previously

been available from regional models. For the community of Whatì this is

valuable as the Community Government expects the recently completed

all-season road (opened to the public November 30, 2021) to increase

population, land use, and development projects in the near future.

Using a binary logistic regression model derived from physical

checks of permafrost presence/absence as the dependent variable,

and vegetation, elevation, and TPI as independent variables, we cre-

ated a permafrost probability surface for the community of Whatì,

NT. According to the regression, 50.0% of the vegetated area is

underlain by permafrost. This regression has a statistical accuracy of

91.4% and an agreement between spatial model values and ground-

truth data of 72.8%.

Local ecology was key in modeling permafrost presence. Vegeta-

tion classes with undisturbed tree cover as well as thick organic soils

and vegetated ground surfaces were strong indicators of permafrost

presence. The classes include low-shrub organic matter, coniferous

forest, peat-plateau and burnt peat-plateau. The opposite was the

case for classes with near-surface mineral soils and more bare ground

such as mixed-wood forest, burnt mixed-wood forest, and low-shrub,

clearing.

The likelihood of near-surface permafrost varied across burnt/

not-burnt pairs. The most significant occurrence of this is between

coniferous forests and burnt coniferous forests. The burn changed

coniferous forests from a class with a 100% prediction rate of near-

surface permafrost to one with a 34% prediction rate. To examine

ecosystem sensitivity to fire disturbance, we modeled two scenarios,

a full burn across the landscape and no burn across the landscape.

The full burn scenario resulted in a 6% reduction in overall near-

surface permafrost coverage to 43.8% based on our model results. In

the no burn scenario, near-surface permafrost coverage increased to

62.1%.

The results of this research illustrate that understanding the

distribution and evolution of boreal wetland permafrost is highly

complex. Boreal wetland environments are extremely heterogeneous

with permafrost distribution having been shown to be highly sensi-

tive to disturbance. This study highlights that disturbance itself in the

short term can lead to punctuated and rapid permafrost changes.

When disturbance is combined with predicted warming,

permafrost becomes exceptionally vulnerable. As a result, it is pru-

dent that future studies in similar regions consider both the impact

of ecosystem structure and associated changes as seriously as a

warming climate.
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